

┝┥┝┥

The use of Lithium Ion batteries for off-grid Renewable Energy applications. (WS131)

Randy Richmond, Manager RightHand Engineering, LLC

Copyright 2012 RightHand Engineering

6/16/2012

About RightHand Engineering

Services:

- Off-grid RE power system design
- Contract engineering of specialty circuits for DC power systems & RE monitoring
 Products:
- WinVerter[™] series solutions for monitoring residential and community RE systems.

House Keeping

- Please silence noise makers (cell phones, etc.)
- Please take time to fill out the workshop evaluation after the session – it helps MREA and me to improve.
- Some of you may know things about Li-Ion that I may not know. If it can help me or others in the audience, please speak up.
- Try to hold questions to the end so that we don't encroach on the next presenter's time.

Workshop #131 Goal

Lithium Ion batteries have revolutionized the Electric Vehicle industry, and the price of Li-Ion is coming down. Come see how Li-Ion batteries can also improve off-grid Renewable Energy applications.

Advanced Level (you'll need to know the meaning of volts, amps, amp-hours, watts/power, watt-hours/energy, impedance)

Outline

- History of Li-Ion Development
- Different types of Li-Ion Batteries
- Uses of Li-Ion in Industry
- The Bad Press about Li-Ion
- My experience of using Li-lon in my EV
- How Li-Ion compares to Lead-Acid (PbA)
- How Li-Ion can improve off-grid residential energy storage
 - Sources of Li-Ion batteries

History of Li-Ion Development

- Late 1970's thru 1980's– research on Lithium-based batteries
- 1991 Sony commercializes Li-Ion battery used in cell phones & laptops.
- 1996 Bellcore commercializes Li-Poly battery.
- 1999 First Li-Phosphate batteries commercialized.
- 2006 Lessons learned from laptop fires. (Chemistry matters)
 - 2007 Large format Li-Ion batteries become available to consumers. Primarily used for EVs

Different types of Li-Ion Chemistries

"Lithium Ion" refers to a range of Lithium-based battery chemistry. Examples:

- LiCoO₂ lithium cobalt oxide
- LiMn₂O₄ lithium manganese oxide
- LiNiO₂ lithium nickel oxide
- LiPo lithium polymer
- LiFePO₄ lithium iron phosphate

Many new types are being developed.

Different types of Li-Ion Formats

Cylindrical

Pouch

Prismatic

Copyright 2012 RightHand Engineering

Uses of Li-Ion in the Industry

- Personal electronics (cell phones, laptops, tablets, etc.)
- Portable tools (drills, saws, etc.)
- Electric Vehicles
- Telecom (on-grid backup, and off-grid)
 What's missing?
- Residential Renewable Energy (primarily offgrid)

Li-Ion's Bad Press

• 2006-2007 Sony/Sanyo Laptop Battery Recall.

Search

• Chevy Volt fire

Forbes

AUTOS | 12/12/2011 @ 1:32PM | 10,733 views

Manual and and and

Chevy Volt Battery Fires Threaten All Electric Vehicle Makers, Not Just GM

My experience using Li-lon

Featured in Home Power #122, Pg 41-50

In 2006 I converted a GMC Sonoma mini pickup to electric using Trojan T145 PbA batteries.

In 2011 I replaced the batteries with 200 Ahr LiFePO₄

My experience using Li-lon

	Before (while using PbA)	After (while using Lilon)
Cost	PbA - \$3300 (24 Trojan T-145s) (Lilon - \$75,000, 2007 price)	Lilon (w/ BMS) - \$15,000 (PbA - \$5000, 2011 price)
Usable energy storage	50% of 37 KWhrs = 18 KWhrs	80% of 28 KWhrs = 23 KWhrs
Battery space required	12.3 ft ²	9.5 ft ²
Vehicle weight	5000 lb (1730 lb batteries)	4200 lb (960 lb batteries)
Driving range	30-40 miles*	75 miles
Acceleration	Poor (0-60 MPH in 35 sec)	Good (0-60 MPH in 21 sec)
AC Watt-hrs per mile	Approx 750 whr/mi	Approx 400 whr/mi

- More stable power through nearly the entire discharge curve
- Discharge much more deeply without any significant reduction in longevity
 - Capacity isn't affected by sitting idle for several days
 - Capacity is affected less by cold temperatures

Lead-Acid (PbA) vs. Lithium Ion (Li-Ion) Comparison

 The "Standard" Golf-Cart Battery (225 Ahr, 6V wet lead acid)

-VS-

- CALB 180 Ahr LiFePO₄
- Sinopoly 200 Ahr LiFePO₄
- PowerFlux 200 Ahr LiFePO₄

Except as noted (*) the following tables contain data from manufacturer's spec sheets.

How Li-Ion compares to PbA Size & Weight vs Energy

Characteristics	PbA (Lead Acid)	Li-Ion (LiFePO₄ Lithium Ion)					
Reference Battery	Trojan T105	CALB SE180AHA		Sinopoloy LPF200AHA		PowerFlux BATVXLFP200AH	
Cell Voltage – Nominal (V)	2	3.2		3.2		3.2	
Capacity – 20 hr rate (Ahr)	225	180		200		200	
Energy Capacity (Whr)	1350	576		640		640	
Recommended Max Discharge Depth	50%	70%		70%		70%	
Usable Energy Capcity (Whr)	675	403		448		448	
Volume (cm ³)	13188	3605		3605		5048	
Volume (cm³)/Whr	9.8	6.3	64%	5.6	58%	7.9	81%
Volume (cm ³)/Usable Whr	19.5	8.9	46%	8.0	41%	11.3	58%
Weight (kg)	28	5.6		5.6		6.3	
Weight (kg)/kWhr	20.7	9.7	47%	8.8	42%	9.8	47%
Weight (kg)/Usable kWhr	41.5	13.9	33%	12.5	30%	14.1	34%
						Fhor	w Fair

Copyright 2012 RightHand Engineering

How Li-lon compares to PbA

Discharging

Characteristics	PbA (Lead Acid)	Li-Ion (LiFePO₄ Lithium Ion)				
Reference Battery	Trojan T105	CALB SE180AHA	ALB SE180AHA Sinopoloy LPF200AHA			
Cell Voltage – Nominal (V)	2	3.2				
Capacity – 20 hr rate (Ahr) [C]	225	180	200			
Recommended Discharge Current	0.2C (45A)	0.3C (54A)	0.3C (60A)	?		
Max Discharge Current (A)	500A* (2.2C)	<mark>1000A</mark> (5.5C <10 sec)	<mark>600A (1000A)</mark> 3C (5C 10 sec)	<mark>600A (1000A)</mark> 3C (5C 10 sec)		
Min Discharge Voltage/cell	1.75V	2.5V	2.8V	2.5V		
Usable Temp Range, Discharge	-20°C to 45°C	-20°C to 55°C -20°C to +70°C -45°C? to				
Self Discharge	5-15%/month	<3%/month				
Impedance (mΩ)/3.2V	0.2*	0.1*	0.1*	?		
Temperature Effect	50% @ -18C. 100% @ 27C	?	9 <mark>2% @ -20C</mark> . 100% @ 25C	90% @ -25C. 100% @ 25C		

Copyright 2012 RightHand Engineering

Li-Ion vs PbA Battery Impedance

Copyright 2012 RightHand Engineering

How Li-lon compares to PbA

Charging

Characteristics	PbA (Lead Acid)	Li-Ion (LiFePO ₄ Lithium Ion)					
Reference Battery	Trojan T105	CALB SE180AHA	Sinopoloy LPF200AHA	PowerFlux BATVXLFP200AH			
Cell Voltage – Nominal (V)	2		3.2				
Capacity – 20 hr rate (Ahr) [C]	225	180	200	200			
Recommended Charge Current	0.1C (23A)	0.3C (54A)	0.3C (60A)	?			
Max Charge Current (A)		?	3C (600A)	Ş			
	2.2/cell Float						
May Charge Voltage	2.45/cell Charge	2.01	2 0\/	3.9V			
Widx Charge Voltage	2.58/cell EQ	5.0V	5.0V				
	2.70/cell MAX						
Usable Temperature Range, Charge	-4°C to 52°C	0°C to 45°C	0°C to 70°C	-45°C? to 85°C			
				Energy Fair			

Copyright 2012 RightHand Engineering

How Li-lon compares to PbA Maintenance

- Wet lead-acid requires re-watering 1-3 months.
- Wet lead-acid requires Equalization charging every 1-3 months.
- Lead-acid requires cleaning periodically (acid seeps through porous lead terminals)
 (sealed lead-acid has a higher price and lower cycle life than wet lead acid)
- Lithium Ion has no periodic maintenance (except perhaps checking bolt tightness)

How Li-lon compares to PbA

Cost

Characteristics	PbA (Lead Acid)	Li-Ion (LiFePO₄ Lithium Ion)					
Reference Battery	Trojan T105 (6V)	CALB SE180AHA		Sinopoloy LPF200AHA		PowerFlux BATVXLFP200AH	
Price*	\$145	\$261		\$290		\$260	
Price/Ahr*	\$0.64	\$1.	\$1.45 \$1.45		45	\$1.30	
Price/Whr*	0.11	0.4	0.45 0.45		45	0.41	
Energy Capacity (Whr)	1350	576		640		640	
Recommended Discharge Depth	50%	70%	80%	70%	80%	70%	80%
Cycle life	750	3000+	2000+	3000+	2000+	5000?	3000?
Usable Energy Capacity (Whr)	675	403	461	448	512	448	512
Lifetime kWhrs*	506	1210	922	1344	1024	2240	1536
Price/Lifetime kWhr*	0.29	0.22	0.28	0.22	0.28	0.12?	0.17?
Longevity	5-7 years	10+ years 10+ years		10+ years			
					The are		

Copyright 2012 RightHand Engineering

Literyy Fai

How Li-lon compares to PbA Summary

Compared to PbA, Li-Ion has better:

- Weight (1/3 of PbA)
- Space (1/2 of PbA)
- Depth of Discharge (70-80%)
- Low Temperature Capacity
- Discharge & Charge Power
- Self Discharge
- Idle Memory

- Impedance
- Maintenance (none)
 - Cycle Life (3000 vs 750)
 - Longevity (10 vs 5-7 yrs)
- Lifetime Energy (kWhrs) Price/Lifetime kWhr
- BUT you do need a Battery Management System (BMS)

What is a BMS?

- A BMS monitors the voltage and temperature of each individual cell to protect them from excessive charging and discharging.
- When a cell becomes full (max voltage reached) it bypasses some current around the full cells until all cells are full.
- It isolates the battery from the charger and/or loads when things get dangerous (voltage or temp are too high or too low).

BMS As An Add-On

Copyright 2012 RightHand Engineering

Charger/Inverter-Integrated BMS

Integrated solutions for Off-Grid RE are rare (so far)

Li-lon Precautions

- NEVER over charge them! A BMS is essential.
- NEVER short them!
- Don't place them upside down (any other orientation is OK)
- When creating a pack, use cells of same make and model and of same age (same as PbA)
- Avoid putting cells in parallel (same as PbA)
- Avoid trickle or float charging these work best when cycled.
- Store them at 40-60% SOC.
- The industry is still learning the optimum way to treat LiFePO₄ batteries. (e.g. some say charging to 80% will greatly increase cycle life).

Is Li-Ion ready for off-grid RE?

Yes, if...

- Your depth of cycle is often more than 30% of capacity (otherwise PbA cycle life may be more cost effective). OR
- You don't have the space or can't support the weight of PbA.
 OR
- You are concerned about frequent maintenance (LI has no watering, no cleaning, 2-3 times the replacement interval).
 AND
- You cycle frequently (avoid prolonged float/trickle charge)
- Your charge system includes (or you add) a Battery Management System (BMS)

So Why Are There No COTS Solutions for Li-lon in Off-Grid RE?

- ?Dealers & Manufacturers have a long history with PbA – change is hard?
- ?High up front cost?
- ?The high cost of making a battery-damaging mistake?
- Lack of fool-proof integrated BMS solutions

Sources of Large Li-Ion Batteries

Lithium Storage Inc.

Manzanita Micro (CALB, Headway)

Lithium Storage (CALB, Sinopoly,

- EV America (PowerFlux)
- EVolve Electrics (CALB, GBS)
- EV Source (CALB)

RealForce)

Clean Power Auto (HousePower BMS)
 These same sources can provide EV-centric BMS systems too.

Purchase Suggestions

- Ask for a report of each cell's capacity and impedance (there can be significant differences between cells even of the same batch).
- Request that all the cells shipped to you are close together in capacity and impedance.
- Ask about the supplier's policy if a cell fails to meet mfg's specs or dies prematurely.

QUESTIONS/COMMENTS?

Please fill out the evaluation questionnaire:

- Workshop #131: The use of Lithium Ion batteries for off-grid Renewable Energy applications.
- Presenter: Randy Richmond
- Time/Place: Sat 11 AM, Brown Tent
 For a copy of this presentation email Randy@RightHandEng.com

Additional Resources

Helpful web sites:

- Cadex Battery University (batteryuniversity.com)
- Energy Efficiency & Technology Magazine (EETmag.com)
- Elithion web site (liionbms.com)
- EV Discussion List (evdl.org)

Note – there is no known resource for Li-Ion in Off-Grid RE applications (yet).

Makers of WinVerter™

Randy Richmond, Manager Randy@RightHandEng.com www.RightHandEng.com

Services:
COTS & Custom Software
Turn-key Solutions
Monitoring System Design
Consulting for Manufacturers, Resellers & End Users

-111